Enhancement of Rabbit Cardiac Sodium Channels by /3-Adrenergic Stimulation

نویسنده

  • J. J. Matsuda
چکیده

Voltage-dependent sodium channels from a variety of tissues are known to be phosphorylated by the cAMP-dependent protein kinase, protein kinase A. However, the functional significance of sodium channel phosphorylation is not clearly understood. Using whole-cell voltage-clamp techniques, we show that sodium currents (INaS) in rabbit cardiac myocytes are enhanced by isoproterenol (ISO). This enhancement of INa by ISO 1) is holding potential dependent, 2) can be mimicked by forskolin and dibutyrl cAMP, and 3) is accompanied by an increase in the rate of Na+ channel inactivation. In single-channel, inside-out patch experiments, the catalytic subunit of protein kinase A also enhances INa and increases the rate of inactivation, suggesting that cardiac Na+ channel phosphorylation may be physiologically important. Addition of the protein kinase A inhibitor to the pipette solution in whole-cell experiments blocks the stimulatory effect of forskolin without blocking the effect of ISO, suggesting that ISO also enhances INa through a cAMP-independent pathway. To determine if ISO may stimulate INa through a direct G protein pathway, single channels were recorded in the presence of the G-activating GTP analogue, GTPyS, and the stimulatory G protein subunit, Gt,. Both of these agents enhanced INa without affecting the rate of Na' channel inactivation. These results suggest that ISO enhances rabbit cardiac INa through a dual (direct and indirect) G protein regulatory pathway. (Circulation Research 1992;70:199-207)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of rabbit cardiac sodium channels by beta-adrenergic stimulation.

Voltage-dependent sodium channels from a variety of tissues are known to be phosphorylated by the cAMP-dependent protein kinase, protein kinase A. However, the functional significance of sodium channel phosphorylation is not clearly understood. Using whole-cell voltage-clamp techniques, we show that sodium currents (INas) in rabbit cardiac myocytes are enhanced by isoproterenol (ISO). This enha...

متن کامل

Protective Effect of Digoxin on Impaired Chronotropic Responsiveness to Adrenergic Stimulation in Cholestatic Rats

Decreased cardiac responsiveness to adrenergic stimulation has been observed in cholestatic liver disease, but the cause remains unclear. Previous reports have suggested that nitric oxide overproduction might have a role in cholestasis-induced bradycardia via inhibition of L-type calcium channels. In the present study, the digoxin has been used to increase cardiac Ca2+ transient in male Sprague...

متن کامل

Localization of cardiac sodium channels in caveolin-rich membrane domains: regulation of sodium current amplitude.

This study demonstrates that caveolae, omega-shaped membrane invaginations, are involved in cardiac sodium channel regulation by a mechanism involving the alpha subunit of the stimulatory heterotrimeric G-protein, Galpha(s), via stimulation of the cell surface beta-adrenergic receptor. Stimulation of beta-adrenergic receptors with 10 micromol/L isoproterenol in the presence of a protein kinase ...

متن کامل

Stimulation of protein kinase C inhibits bursting in disease-linked mutant human cardiac sodium channels.

BACKGROUND Mutations in SCN5A, the gene coding for the human cardiac Na+ channel alpha-subunit, are associated with variant 3 of the long-QT syndrome (LQT-3). Several LQT-3 mutations promote a mode of Na+ channel gating in which a fraction of channels fail to inactivate, contributing sustained Na+ channel current (Isus), which can delay repolarization and prolong the QT interval. Here, we inves...

متن کامل

Mechanism of Action of the Thyroid Hormone on the Heart

SUMMARY  The foliowing cardiac effects may be at­tributed to thyroxin:  1-Thyroxin augments all anaerobic pro­cesses in the body includ::ng the heart, and decreases the glycogen content of the heart ( 1, 2, 5, 27). The resistance of the heart to anoxia is increased in hyperthyroidism ( 25). 2- Thyroxin influences the cardiac weight and prevents cardiac atrophy (3, 8, 10, 11, 19, 20, 21, 30...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005